- Main
A fluorometric assay for high-throughput phosphite quantitation in biological and environmental matrices
Published Web Location
https://doi.org/10.1039/d3an00575eAbstract
Phosphite, the anion of phosphorus acid, is an important metabolite in the global biogeochemical phosphorus cycle and a phosphorus species with unique agricultural properties. As such, methods for detecting phosphite quantitatively and selectively are critical to evidencing phosphorus redox chemistry. Here, we present a fluorescence-based assay for phosphite, utilizing the NAD+-dependent oxidation of phosphite by phosphite dehydrogenase and the subsequent reduction of resazurin to resorufin. With the application of a thermostable phosphite dehydrogenase, a medium-invariant analytical approach, and novel sample preparation methods, the assay is capable of rapid and accurate phosphite quantification with a 3 μM limit of detection in a wide array of biologically- and environmentally-relevant matrices, including bacterial and archaeal cell lysate, seawater, anaerobic digester sludge, and plant tissue. We demonstrate the utility of the assay by quantitating phosphite uptake in a model crop plant in the presence or absence of a phosphite-oxidising strain of Pseudomonas stutzeri as a soil additive, establishing this bacterium as an efficient phosphite converting biofertilizer.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-