- Main
Unification of Language Understanding, Device Comprehension and Knowledge Acquisition
Abstract
Cognitive agents often acquire knowledge of how devices work by reading a book. We describe a computational theory of understanding a natural language description of a device, comprehending how the device works, and acquiring a device model. The theory posits a complex interplay between language, memory, comprehension, problem-solving and learning faculties. Long-term memory contains cases of previously encountered devices and associated structure-behavior-function (SBF) models that explain how the known device works. Language processing is both bottom-up and top-down. Bottom-up processing is done through spreading-activation networks. Where the semantics of the nodes and links in the network arises from the SBF ontology. The comprehension process constructs a SBF model for the new device by adapting the known device models - we call this process adaptive modeling. This multifaculty computational theory is instantiated in an operational computer system called KA that (i) reads and understands English language descriptions of devices from David Macaulay's popular science book The Way Things Work, (ii) comprehends how the described device works, and (iii) acquires a SBF model for the device.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-