Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Proximal remote sensing: an essential tool for bridging the gap between high‐resolution ecosystem monitoring and global ecology

Published Web Location

https://doi.org/10.1111/nph.20405Creative Commons 'BY' version 4.0 license
Abstract

A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar-induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information-rich, enabling us to address key ecological questions unanswerable from space-based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View