- Main
14.8% Quantum Efficient Gallium Phosphide Photocatalyst for Hydrogen Evolution
Published Web Location
https://doi.org/10.1021/jacs.3c14545Abstract
Gallium phosphide is an established photoelectrode material for H2 or O2 evolution from water, but particle-based GaP photocatalysts for H2 evolution are very rare. To understand the reasons, we investigated the photocatalytic H2 evolution reaction (HER) of suspended n-type GaP particles with iodide, sulfite, ferricyanide, ferrous ion, and hydrosulfide as sacrificial electron donors, and using Pt, RhyCr2-yO3, and Ni2P HER cocatalysts. A record apparent quantum efficiency of 14.8% at 525 nm was achieved after removing gallium and oxide charge trapping states from the GaP surface, adding a Ni2P cocatalyst to reduce the proton reduction overpotential, lowering the Schottky-barrier at the GaP-cocatalyst interface, adjusting the polarity of the depletion layer at the GaP-liquid interface, and optimizing the electrochemical potential of the electron donor. The work not only showcases the main factors that control charge separation in suspended photocatalysts, but it also explains why most known HER photocatalysts in the literature are based on n-type and not p-type semiconductors.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-