- Main
Using Machine Learning to Predict Bilingual Language Proficiency from Reaction Time Priming Data
Abstract
Studies of bilingual language processing typically assign participants to groups based on their language proficiency and average across participants in order to compare the two groups. This approach loses much of the nuance and individual differences that could be important for furthering theories of bilingual language comprehension. In this study, we present a novel use of machine learning (ML) to develop a predictive model of language proficiency based on behavioral data collected in a priming task. The model achieved 75% accuracy in predicting which participants were proficient in both Spanish and English. Our results indicate that ML can be a useful tool for characterizing and studying individual differences.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-