Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Investigating tumor perfusion by hyperpolarized 13C MRI with comparison to conventional gadolinium contrast‐enhanced MRI and pathology in orthotopic human GBM xenografts

Published Web Location

https://doi.org/10.1002/mrm.26155
Abstract

Purpose

Dissolution dynamic nuclear polarization (DNP) enables the acquisition of 13 C magnetic resonance data with a high sensitivity. Recently, metabolically inactive hyperpolarized 13 C-labeled compounds have shown to be potentially useful for perfusion imaging. The purpose of this study was to validate hyperpolarized perfusion imaging methods by comparing with conventional gadolinium (Gd)-based perfusion MRI techniques and pathology.

Methods

Dynamic 13 C data using metabolically inactive hyperpolarized bis-1,1-(hydroxymethyl)-[1-13 C]cyclopropane-d8 (HMCP) were obtained from an orthotopic human glioblastoma (GBM) model for the characterization of tumor perfusion and compared with standard Gd-based dynamic susceptibility contrast (DSC) MRI data and immunohistochemical analysis from resected brains.

Results

Distinct HMCP perfusion characteristics were observed within the GBM tumors compared with contralateral normal brain tissue. The perfusion parameters obtained from the hyperpolarized HMCP data in tumor were strongly correlated with normalized peak height measured from the DSC images. The results from immunohistochemical analysis supported these findings by showing a high level of vascular staining for tumor that exhibited high levels of hyperpolarized HMCP signal.

Conclusion

The results from this study have demonstrated that hyperpolarized HMCP data can be used as an indicator of tumor perfusion in an orthotopic xenograft model for GBM. Magn Reson Med 77:841-847, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View