- Main
Reaction of Iodine Atoms with Submicrometer Squalane and Squalene Droplets: Mechanistic Insights into Heterogeneous Reactions
Published Web Location
https://doi.org/10.1021/jp5085247Abstract
The gas-phase reaction of iodine atoms with hydrocarbon molecules is energetically unfavorable, and there is no direct evidence for iodinated product formation by either H abstraction or I addition reactions at ambient temperature. Here we consider the possible heterogeneous reaction of I atoms with submicrometer droplets composed of a saturated alkane, squalane (Sq), and an unsaturated alkene, squalene (Sqe). The investigations are performed in an atmospheric pressure photochemical flow tube reactor in conjunction with a vacuum ultraviolet photoionization aerosol mass spectrometer and a scanning mobility particle sizer. Squalane, a branched alkane, is unreactive toward I atoms within the signal-to-noise, and an upper limit of the effective reactive uptake coefficient is estimated to be γI(Sq) ≤ 8.58 × 10(–7). In contrast, the reaction of I atoms with unsaturated submicrometer squalene droplets results in observable iodinated squalene products. The effective reactive uptake coefficient of I atom with squalene particles is determined to be γI(Sqe) = (1.20 ± 0.52) × 10(–4) at an average I concentration of 1.5 × 10(14) molecules·cm(–3).
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-