Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The Dynamics of Locomotor Neuromuscular Fatigue during Ramp-Incremental Cycling to Intolerance

Abstract

Introduction

Traditional neuromuscular fatigue assessments are not task-specific and are unable to characterize neuromuscular performance decline during dynamic whole-body exercise. This study used interleaved maximal isokinetic cycling efforts to characterize the dynamics of the decline in neuromuscular performance during ramp-incremental (RI) cycle ergometry exercise to intolerance.

Methods

Eleven young healthy participants (10 male/1 female) performed two RI cycle ergometry exercise tests to intolerance: 1) RI exercise with peak isokinetic power (Piso) at 80 rpm measured at baseline and immediately at intolerance from a maximal ~6 s effort, and 2) RI exercise where additional Piso measurements were interleaved every 90 s to characterize the decline in neuromuscular performance during the RI test. Muscle excitation was measured using EMG during all Piso assessments, and pulmonary gas exchange was measured throughout.

Results

Baseline Piso was 832 ± 140 W and RI exercise reduced Piso to 349 ± 96 W at intolerance ( P = 0.001), which was not different from flywheel power at intolerance (303 ± 96 W; P = 0.292). There was no reduction in Piso between baseline cycling and gas exchange threshold (GET; baseline Piso vs mean Piso below GET: 828 ± 146 vs 815 ± 149 W; P = 1.00). Piso fell progressively above GET until intolerance (Piso every 90 s above GET: 759 ± 139, 684 ± 141, 535 ± 144, 374 ± 117 W; each P < 0.05 vs baseline and mean Piso below GET). Peak muscle excitation (EMG) was also reduced only above GET (73% ± 14% of baseline, at intolerance; P < 0.05). However, the reduction in peak Piso preceded the reduction in peak muscle excitation.

Conclusions

The dynamics of the decline in neuromuscular performance (reduction in Piso and EMG) during RI exercise are consistent with known intensity-dependent metabolic and traditional pre-post neuromuscular fatigue responses to discrete bouts of constant-power exercise.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View