- Main
JAK/STAT Pathway Inhibition Reverts IL7-Induced Glucocorticoid Resistance in a Subset of Human T-Cell Acute Lymphoblastic Leukemia
Published Web Location
https://doi.org/10.1182/blood.v128.22.3963.3963Abstract
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling in response to interleukin-7 (IL7) stimulation. Removing IL7 or inhibiting JAK/STAT signaling sensitizes these T-ALLs, and a subset of ETP T-ALLs, to GCs. The combination of the GC dexamethasone and the JAK1/2 inhibitor ruxolitinib altered the balance between pro- and anti-apoptotic factors in samples with IL7-dependent GC resistance, but not in samples with IL7-independent GC resistance. Together, these data suggest that the addition of ruxolitinib or other inhibitors of IL7 receptor/JAK/STAT signaling may enhance the efficacy of GCs in a biologically defined subset of T-ALL.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-