Skip to main content
Download PDF
- Main
Moxifloxacin Pharmacokinetics, Cardiac Safety, and Dosing for the Treatment of Rifampicin-Resistant Tuberculosis in Children
Published Web Location
https://doi.org/10.1093/cid/ciab641Abstract
Background
Moxifloxacin is a recommended drug for rifampin-resistant tuberculosis (RR-TB) treatment, but there is limited pediatric pharmacokinetic and safety data, especially in young children. We characterize moxifloxacin population pharmacokinetics and QT interval prolongation and evaluate optimal dosing in children with RR-TB.Methods
Pharmacokinetic data were pooled from 2 observational studies in South African children with RR-TB routinely treated with oral moxifloxacin once daily. The population pharmacokinetics and Fridericia-corrected QT (QTcF)-interval prolongation were characterized in NONMEM. Pharmacokinetic simulations were performed to predict expected exposure and optimal weight-banded dosing.Results
Eighty-five children contributed pharmacokinetic data (median [range] age of 4.6 [0.8-15] years); 16 (19%) were aged <2 years, and 8 (9%) were living with human immunodeficiency virus (HIV). The median (range) moxifloxacin dose on pharmacokinetic sampling days was 11 mg/kg (6.1 to 17). Apparent clearance was 6.95 L/h for a typical 16-kg child. Stunting and HIV increased apparent clearance. Crushed or suspended tablets had faster absorption. The median (range) maximum change in QTcF after moxifloxacin administration was 16.3 (-27.7 to 61.3) ms. No child had QTcF ≥500 ms. The concentration-QTcF relationship was nonlinear, with a maximum drug effect (Emax) of 8.80 ms (interindividual variability = 9.75 ms). Clofazimine use increased Emax by 3.3-fold. Model-based simulations of moxifloxacin pharmacokinetics predicted that current dosing recommendations are too low in children.Conclusions
Moxifloxacin doses above 10-15 mg/kg are likely required in young children to match adult exposures but require further safety assessment, especially when coadministered with other QT-prolonging agents.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%