Skip to main content
Download PDF
- Main
Data-Driven vs Consensus Diagnosis of MCI
Published Web Location
https://doi.org/10.1212/wnl.0000000000012600Abstract
Background and objectives
Given prior work demonstrating that mild cognitive impairment (MCI) can be empirically differentiated into meaningful cognitive subtypes, we applied actuarial methods to comprehensive neuropsychological data from the University of California San Diego Alzheimer's Disease Research Center (ADRC) in order to identify cognitive subgroups within ADRC participants without dementia and to examine cognitive, biomarker, and neuropathologic trajectories.Methods
Cluster analysis was performed on baseline neuropsychological data (n = 738; mean age 71.8). Survival analysis examined progression to dementia (mean follow-up 5.9 years). CSF Alzheimer disease (AD) biomarker status and neuropathologic findings at follow-up were examined in a subset with available data.Results
Five clusters were identified: optimal cognitively normal (CN; n = 130) with above-average cognition, typical CN (n = 204) with average cognition, nonamnestic MCI (naMCI; n = 104), amnestic MCI (aMCI; n = 216), and mixed MCI (mMCI; n = 84). Progression to dementia differed across MCI subtypes (mMCI > aMCI > naMCI), with the mMCI group demonstrating the highest rate of CSF biomarker positivity and AD pathology at autopsy. Actuarial methods classified 29.5% more of the sample with MCI and outperformed consensus diagnoses in capturing those who had abnormal biomarkers, progressed to dementia, or had AD pathology at autopsy.Discussion
We identified subtypes of MCI and CN with differing cognitive profiles, clinical outcomes, CSF AD biomarkers, and neuropathologic findings over more than 10 years of follow-up. Results demonstrate that actuarial methods produce reliable cognitive phenotypes, with data from a subset suggesting unique biological and neuropathologic signatures. Findings indicate that data-driven algorithms enhance diagnostic sensitivity relative to consensus diagnosis for identifying older adults at risk for cognitive decline.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%