Computing at large scales has become extremely challenging due to increasing heterogeneity in both hardware and software. More and more scientific workflows must tackle a range of scales and use machine learning and AI intertwined with more traditional numerical modeling methods, placing more demands on computational platforms. These constraints indicate a need to fundamentally rethink the way computational science is done and the tools that are needed to enable these complex workflows. The current set of C++-based solutions may not suffice, and relying exclusively upon C++ may not be the best option, especially because several newer languages and boutique solutions offer more robust design features to tackle the challenges of heterogeneity. In June 2023, we held a mini symposium that explored the use of newer languages and heterogeneity solutions that are not tied to C++ and that offer options beyond template metaprogramming and Parallel. For for performance and portability. We describe some of the presentations and discussion from the mini symposium in this article.