BACKGROUND:Widespread brain atrophy in alcohol-dependent individuals (ALC) has been consistently documented in pathological and magnetic resonance imaging (MRI) studies. Longitudinal MRI studies have shown that the regional brain volume losses in ALC are partially reversible during abstinence from alcohol. The goal of this study was to determine volume reductions in cortical and subcortical regions functionally important to substance use behavior and their changes during short-term (1 week to 1 month) and long-term abstinence (1 to 7 months) from alcohol. The regions of interest (ROIs) were as follows: anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), insula, amygdala, and hippocampus. METHODS:A total of 85 unique ALC were assessed at 1 week (n = 65), 1 month (n = 82), and 7 months (n = 36) of abstinence. In addition, 17 light/nondrinking healthy controls (CON) were assessed at baseline and follow-up over a 10-month interval. Regional brain volumes were derived from FreeSurfer. Cross-sectional statistical analyses using 1-way analysis of variance or Fisher's exact test were applied to identify group differences. Longitudinal statistical analyses using linear mixed models were applied to identify regional volume increases and nonlinear volume recovery trajectories. RESULTS:We demonstrated significant regional volume reductions in ACC, DLPFC, and hippocampus. Older age was associated with smaller DLPFC and OFC, and higher average monthly drinking over 1 year prior to study was associated with smaller OFC. We also demonstrated significant volume increases of all ROIs except amygdala in ALC and significant nonlinear volume recovery trajectories of DLPFC, OFC, and insula. CONCLUSIONS:Results showed significant volume reductions in key regions of the executive control, salience, and emotion networks in ALC at entry into treatment and significant volume increases during short-term and long-term abstinence that were nonlinear over the entire abstinence period for the DLPFC, OFC, and insula. This gray matter plasticity during alcohol abstinence may have important neurobiological and neurocognitive implications in ALC, and it may contribute to an individual's ability to maintain abstinence from alcohol at different phases.