- Wang, Lin;
- Song, Huan;
- Yuan, Liyong;
- Li, Zijie;
- Zhang, Peng;
- Gibson, John K;
- Zheng, Lirong;
- Wang, Hongqing;
- Chai, Zhifang;
- Shi, Weiqun
Environmental contamination by 99Tc(VII) from radioactive wastewater streams is of particular concern due to the long half-life of 99Tc and high mobility of pertechnetate. Herein, we report a novel MXene-polyelectrolyte nanocomposite with three-dimensional networks for enhanced removal of perrhenate, which is pertechnetate simulant. The introduction of poly(diallyldimethylammonium chloride) (PDDA) regulates the surface charge and improves the stability of Ti2CT x nanosheet, resulting in Re(VII) removal capacity of up to 363 mg g-1, and fast sorption kinetics. The Ti2CT x/PDDA nanocomposite furthermore exhibits good selectivity for ReO4- when competing anions (such as Cl- and SO42-) coexist at a concentration of 1800 times. The immobilization mechanism was confirmed as a sorption-reduction process by batch sorption experiments and X-ray photoelectron spectroscopy. The pH-dependent reducing activity of Ti2CT x/PDDA nanocomposite toward Re(VII) was clarified by X-ray absorption spectroscopy. As the pH increases, the local environment gradually changes from octahedral-coordinated Re(IV) to tetrahedral-coordinated Re(VII). The overall results suggest that Ti2CT x/PDDA nanocomposite may be a promising candidate for efficient elimination of Tc contamination. The reported surface modification strategy might result in applications of MXene-based materials in environmental remediation of other oxidized anion pollutants.