Optical Doppler tomography (ODT) is an imaging modality that takes advantage of the short coherence length of a broad-band light sources to perform micrometer-scale, cross-sectional imaging of tissue structure and blood flow dynamics simultaneously. We review in this paper the principal of ODT and its applications. Results from in vitro and in vivo model studies demonstrated that ODT can map the blood flow velocity profile with high spatial resolution in scattering medium. ODT detection mechanisms are illustrated using Monte Carlo simulations. The application of ODT to image brain hemodynamics is demonstrated. Finally, we discuss the limitations of the current technology and application of a phase resolved technique to improve image speed and quality.