Mutations at the arg-6 locus in Neurospora crassa are divided into two complementation groups (A and B) and a third noncomplementing group. There are many suppressible nonsense mutations among mutants in complementation group B and one in the noncomplementing group; no nonsense mutations exist among mutants in complementation group A (Davis, R. H., and Weiss, R. L. (1983) Mol. Gen. Genet. 192, 46-50). We show here that the mutants are defective in either or both of two enzymes of arginine biosynthesis, acetylglutamate kinase and/or acetylglutamyl-phosphate reductase. Mutants in complementation group A lack acetylglutamate kinase, those in complementation group B lack acetylglutamyl-phosphate reductase, and those in the noncomplementing group lack both activities. Mutants in group B also have reduced levels of acetylglutamate kinase. The enzymes from purified mitochondria are readily separable by gel filtration and by Blue A dye affinity chromatography. Acetylglutamate kinase appears to be an octamer with a molecular weight of 400,000, whereas acetylglutamyl-phosphate reductase appears to be a dimer with a molecular weight of 93,000. This suggests that the two activities reside on distinct polypeptides. These results are best accommodated by the following model: the arg-6 locus encodes a single mRNA which is translated into a single polypeptide; the latter is then cleaved post-translationally to yield two physically separable enzymes.