Imaging hydraulically active fracture zones (HAFZ) is of paramount importance to subsurface resource extraction, geologic storage, and hazardous waste disposal. We have developed advanced 3D finite-element (FE) electrical imaging algorithms for HAFZ in the presence of a steel-cased well. The algorithms use tetrahedral FE meshes in the simulation domain and coarse rectangular finite-difference meshes in the imaging domain. This heterogeneous dual-mesh approach is well suited to modeling the multiscale earth model due to steel-cased wells. We find that the algorithms accurately and efficiently simulate surface electric field measurements over a 3D HAFZ at depth when one end point of a surface electric source is connected to a wellhead. For brevity, this configuration is called the top-casing electric source method. By replacing a hollow cased well with a solid prism, we improve our computational efficiency without affecting the solution accuracy. The sensitivity of the top-casing source method to HAFZ highly depends on the continuity of a steel-cased well because it makes currents preferentially flow to HAFZ. The sensitivity also depends on conductivity structures around the well because they control current leaking from the steel-cased well. We find that the method can image a localized HAFZ and detect changes in its width and height. The imaging results are improved when a volume of the imaging domain is constrained from geomechanical perspectives. A primary advantage of the method is the fact that the sources and receivers are placed on the surface, thus not interrupting the well operation.