BACKGROUND: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys). A comprehensive study was conducted, by taking advantage of the PS I 3D structures and the TSR-based algorithm, to answer three questions: (i) Are electron cofactors including P700, A-1 and A0, which are chemically identical chlorophylls, structurally different? (ii) There are two electron transfer chains (A and B branches) in PS I. Are the cofactors on both branches structurally different? (iii) Are the amino acids in cofactor binding sites structurally different from those not in cofactor binding sites? RESULTS: The key contributions and important findings include: (i) a novel TSR-based method for representing 3D structures of pigments as well as for quantifying pigment structures was developed; (ii) the results revealed that the redox cofactor, P700, are structurally conserved and different from other redox factors. Similar situations were also observed for both A-1 and A0; (iii) the results demonstrated structural differences between A and B branches for the redox cofactors P700, A-1, A0 and A1 as well as their cofactor binding sites; (iv) the tryptophan residues close to A0 and A1 are structurally conserved; (v) The TSR-based method outperforms the Root Mean Square Deviation (RMSD) and the Ultrafast Shape Recognition (USR) methods. CONCLUSIONS: The structural analyses of redox cofactors and their binding sites provide a foundation for understanding the unique chemical and physical properties of each redox cofactor in PS I, which are essential for modulating the rate and direction of energy and electron transfers.