Purpose
Glial cell line-derived neurotrophic factor (GDNF) is neuroprotective of retinal neurons, and transduced retinal progenitor cells (RPCs) can deliver this cytokine for the treatment of retinal diseases, yet the potential effects of GDNF on RPCs have received little attention.
Methods
Murine RPCs were assessed under multiple conditions in the presence or absence of epidermal growth factor (EGF, 20 ng/ml) and/or GDNF (10 ng/ml) using a variety of techniques, including live-cell imaging, caspase-3 activity assay, whole genome microarray, quantitative polymerase chain reaction (qPCR), and western blotting.
Results
Live monitoring revealed that formation of initial aggregates resulted largely from the collision and adherence of dissociated RPCs, as opposed to clonal proliferation. Spheres enlarged in size and number, with more reaching the threshold criteria for cross-sectional areas in the EGF+GDNF condition. Proliferation was measurably augmented in association with EGF+GDNF, and Ki-67 expression was modestly increased (1.07 fold), as were hairy and enhancer of split 5 (Hes5), mammalian achaete-scute homolog 1 (Mash1), and Vimentin. However, global gene expression did not reveal a notable treatment-related response, and the expression of the majority of progenitor and lineage markers examined remained stable. GDNF reduced RPC apoptosis, compared to complete growth-factor withdrawal, although it could not by itself sustain mitotic activity.
Conclusions
These data support the feasibility of developing GDNF-transduced RPCs as potential therapeutic agents for use in retinal diseases.