This paper studies the optimal and fair service allocation for a variety of
mobile applications (single or group and collaborative mobile applications) in
mobile cloud computing. We exploit the observation that using tiered clouds,
i.e. clouds at multiple levels (local and public) can increase the performance
and scalability of mobile applications. We proposed a novel framework to model
mobile applications as a location-time workflows (LTW) of tasks; here users
mobility patterns are translated to mobile service usage patterns. We show that
an optimal mapping of LTWs to tiered cloud resources considering multiple QoS
goals such application delay, device power consumption and user cost/price is
an NP-hard problem for both single and group-based applications. We propose an
efficient heuristic algorithm called MuSIC that is able to perform well (73% of
optimal, 30% better than simple strategies), and scale well to a large number
of users while ensuring high mobile application QoS. We evaluate MuSIC and the
2-tier mobile cloud approach via implementation (on real world clouds) and
extensive simulations using rich mobile applications like intensive signal
processing, video streaming and multimedia file sharing applications. Our
experimental and simulation results indicate that MuSIC supports scalable
operation (100+ concurrent users executing complex workflows) while improving
QoS. We observe about 25% lower delays and power (under fixed price
constraints) and about 35% decrease in price (considering fixed delay) in
comparison to only using the public cloud. Our studies also show that MuSIC
performs quite well under different mobility patterns, e.g. random waypoint and
Manhattan models.