There is growing evidence for individuality in dietary preferences and foraging behaviors within populations of various species. This is especially important for apex predators, since they can potentially have wide dietary niches and a large impact on trophic dynamics within ecosystems. We evaluate the diet of an apex predator, the white shark (Carcharodon carcharias), by measuring the stable carbon and nitrogen isotope composition of vertebral growth bands to create lifetime records for 15 individuals from California. Isotopic variations in white shark diets can reflect within-region differences among prey (most importantly related to trophic level), as well as differences in baseline values among the regions in which sharks forage, and both prey and habitat preferences may shift with age. The magnitude of isotopic variation among sharks in our study (>5‰ for both elements) is too great to be explained solely by geographic differences, and so must reflect differences in prey choice that may vary with sex, size, age and location. Ontogenetic patterns in δ(15)N values vary considerably among individuals, and one third of the population fit each of these descriptions: 1) δ(15)N values increased throughout life, 2) δ(15)N values increased to a plateau at ∼5 years of age, and 3) δ(15)N values remained roughly constant values throughout life. Isotopic data for the population span more than one trophic level, and we offer a qualitative evaluation of diet using shark-specific collagen discrimination factors estimated from a 3+ year captive feeding experiment (Δ(13)C(shark-diet) and Δ(15)N(shark-diet) equal 4.2‰ and 2.5‰, respectively). We assess the degree of individuality with a proportional similarity index that distinguishes specialists and generalists. The isotopic variance is partitioned among differences between-individual (48%), within-individuals (40%), and by calendar year of sub-adulthood (12%). Our data reveal substantial ontogenetic and individual dietary variation within a white shark population.