A series of air permeability tests were conducted on four hand-packed samples of alluvial sands and glass beads using a newly developed air permeameter. The permeameter was tested and found capable of precisely controlling soil-water matric potential (in the range 0 to 1 bar) while simultaneously facilitating the direct measurement of air permeability in porous media. Permeameter results indicate that air permeability increases with a corresponding decrease in water content over a monotonic drainage cycle. It was observed that the rate of change in air permeability with respect to changes in water content is highest at high water content and lowest at low water content. In several soil samples, the air permeability approached a constant value at low water content. Air permeability variations with water content were observed to differ among soils of different texture. For example, the intrinsic permeability of water was 11 to 86% of the maximum air permeability. The new permeameter allowed rapid and accurate measurements of air permeability in fine-textured materials over a wide range of matric potentials and water content.