- Murphy, Eamonn;
- Liu, Yuanchao;
- Matanovic, Ivana;
- Rüscher, Martina;
- Huang, Ying;
- Ly, Alvin;
- Guo, Shengyuan;
- Zang, Wenjie;
- Yan, Xingxu;
- Martini, Andrea;
- Timoshenko, Janis;
- Cuenya, Beatriz;
- Zenyuk, Iryna;
- Pan, Xiaoqing;
- Spoerke, Erik;
- Atanassov, Plamen
Electrocatalytic reduction of waste nitrates (NO3-) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3- reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2- intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2- reduction activity and NO3- reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2- evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.