- Allega, A;
- Anderson, MR;
- Andringa, S;
- Askins, M;
- Auty, DJ;
- Bacon, A;
- Baker, J;
- Barão, F;
- Barros, N;
- Bayes, R;
- Beier, EW;
- Bezerra, TS;
- Bialek, A;
- Biller, SD;
- Blucher, E;
- Caden, E;
- Callaghan, EJ;
- Chen, M;
- Cheng, S;
- Cleveland, B;
- Cookman, D;
- Corning, J;
- Cox, MA;
- Dehghani, R;
- Deloye, J;
- Depatie, MM;
- Di Lodovico, F;
- Dima, C;
- Dittmer, J;
- Dixon, KH;
- Esmaeilian, MS;
- Falk, E;
- Fatemighomi, N;
- Ford, R;
- Gaur, A;
- González-Reina, OI;
- Gooding, D;
- Grant, C;
- Grove, J;
- Hall, S;
- Hallin, AL;
- Hallman, D;
- Heintzelman, WJ;
- Helmer, RL;
- Hewitt, C;
- Howard, V;
- Hreljac, B;
- Hu, J;
- Huang, P;
- Hunt-Stokes, R;
- Hussain, SMA;
- Inácio, AS;
- Jillings, CJ;
- Kaluzienski, S;
- Kaptanoglu, T;
- Khan, H;
- Kladnik, J;
- Klein, JR;
- Kormos, LL;
- Krar, B;
- Kraus, C;
- Krauss, CB;
- Kroupová, T;
- Lake, C;
- Lebanowski, L;
- Lefebvre, C;
- Lozza, V;
- Luo, M;
- Maio, A;
- Manecki, S;
- Maneira, J;
- Martin, RD;
- McCauley, N;
- McDonald, AB;
- Mills, C;
- Milton, G;
- Colina, A Molina;
- Morris, D;
- Morton-Blake, I;
- Mubasher, M;
- Naugle, S;
- Nolan, LJ;
- O’Keeffe, HM;
- Gann, GD Orebi;
- Page, J;
- Paleshi, K;
- Parker, W;
- Paton, J;
- Peeters, SJM;
- Pickard, L;
- Quenallata, B;
- Ravi, P;
- Reichold, A;
- Riccetto, S;
- Rose, J;
- Rosero, R;
- Semenec, I;
- Simms, J;
- Skensved, P;
- Smiley, M;
- Smith, J;
- Svoboda, R;
- Tam, B;
- Tseng, J;
- Vázquez-Jáuregui, E;
- Veinot, JGC;
- Virtue, CJ;
- Ward, M;
- Weigand, JJ;
- Wilson, JR;
- Wilson, JD;
- Wright, A;
- Yang, S;
- Yeh, M;
- Ye, Z;
- Yu, S;
- Zhang, Y;
- Zuber, K;
- Zummo, A
Abstract:
The SNO$$+$$
+
collaboration reports its first spectral analysis of long-baseline reactor antineutrino oscillation using 114 tonne-years of data. Fitting the neutrino oscillation probability to the observed energy spectrum yields constraints on the neutrino mass-squared difference $$\Delta m^2_{21}$$
Δ
m
21
2
. In the ranges allowed by previous measurements, the best-fit $$\Delta m^2_{21}$$
Δ
m
21
2
is ($$8.85^{+1.10}_{-1.33}$$
8
.
85
-
1.33
+
1.10
) $$\times $$
×
$$10^{-5}$$
10
-
5
$$\hbox {eV}^2$$
eV
2
. This measurement is continuing in the next phases of SNO+ and is expected to surpass the present global precision on $$\Delta m^2_{21}$$
Δ
m
21
2
with about three years of data.