This study investigated whether transplanted sheets of human fetal retina together with its retinal pigment epithelium (RPE) could develop and maintain their cytoarchitecture after long survival times. Transplant recipients were nine albino athymic nu/nu rats with a normal retina. The donor tissue was dissected from fetuses of 12-17 weeks gestational age. Transplants were analyzed at 5-12 months after surgery by light and electron microscopy, and immunohistochemistry with various antibodies specific for rhodopsin, S-antigen, transducin, neurofilament and synaptophysin. In 4 of 11 transplants, the RPE stayed as a monolayer sheet and supported the development of the retinal sheet with a normal lamination, including photoreceptor inner and outer segments. Cones and rods in the organized transplants were labeled with different photoreceptor markers. Inner and outer plexiform layers, containing cone pedicles and rods spherules, were immunoreactive for synaptophysin. As the recipients had a normal retina, transplant/host integration was not expected. However, at the transplant/host interface, there were sometimes areas without glial barriers, and neurofilament-containing processes could be observed crossing between transplant and host. In other, more disorganized transplants, the RPE cells were partially dispersed or clumped together in clusters. Such transplants developed photoreceptors in rosettes, often with inner and outer segments. In conclusion, sheets of human fetal retina transplanted together with its RPE to the subretinal space of nude rats can develop and maintain perfectly laminated transplants after long survival times, indicating the potential of applying cotransplantation to human patients with retinal diseases.