Feature learning forms the cornerstone for tackling challenging learning
problems in domains such as speech, computer vision and natural language
processing. In this paper, we consider a novel class of matrix and
tensor-valued features, which can be pre-trained using unlabeled samples. We
present efficient algorithms for extracting discriminative information, given
these pre-trained features and labeled samples for any related task. Our class
of features are based on higher-order score functions, which capture local
variations in the probability density function of the input. We establish a
theoretical framework to characterize the nature of discriminative information
that can be extracted from score-function features, when used in conjunction
with labeled samples. We employ efficient spectral decomposition algorithms (on
matrices and tensors) for extracting discriminative components. The advantage
of employing tensor-valued features is that we can extract richer
discriminative information in the form of an overcomplete representations.
Thus, we present a novel framework for employing generative models of the input
for discriminative learning.