Background
Patients diagnosed with locally advanced pancreatic cancer are usually not eligible for surgical resection because of significant vascular involvement. Stereotactic body radiation therapy and chemotherapy are the treatments recommended by the National Comprehensive Cancer Network criteria. For patients who do not respond to or tolerate stereotactic body radiation therapy and/or chemotherapy, a new option is irreversible electroporation. Irreversible electroporation is a nonthermal minimally invasive ablation technique that uses electrical pulses to induce apoptosis of tumor cells without damage to the extracellular matrix, thus preserving ducts and vessels. Irreversible electroporation requires very precise needle placement, which has limited its ubiquitous use. Intraprocedural cone-beam computed tomography with navigation can be fused with previous imaging to provide real-time tumor navigation capabilities during the procedure to allow for more accurate needle placement and treatment. Here, we present a patient who underwent percutaneous irreversible electroporation with intraprocedural cone-beam computed tomography fusion guidance to treat his pancreatic cancer.Case presentation
The patient, an 88-year-old White male, initially presented with abdominal pain, and was ultimately diagnosed with locally advanced pancreatic cancer. He has an excellent performance status and no other comorbidities. He was started on chemotherapy and radiation therapy, with good response. However, continued vascular involvement of the tumors precluded him from safe surgical resection. The patient underwent irreversible electroporation with intraprocedural cone-beam computed tomography fusion navigation. The primary lesion demonstrates no residual tumor, and the soft tissue involvement of the adjacent vasculature has stabilized.Conclusions
Although not curative on its own, irreversible electroporation holds promise as a treatment option for patients with locally advanced pancreatic cancer to increase downsizing to curative surgery or increase quality of life. Cone-beam computed tomography navigation can improve irreversible electroporation by providing guidance during needle guidance. Image fusion with previous advanced imaging can improve lesion visualization and targeting, thereby improving the effectiveness of irreversible electroporation.