The effects of combined photodynamic therapy (PDT) and ionizing radiation are studied in a human glioma spheroid model. The degree of interaction between the two modalities depends in a complex manner on factors such as PDT irradiation fluence, fluence rate and dose of ionizing radiation. It is shown that gamma radiation and PDT interact in a synergistic manner only if both light fluence and gamma radiation dose exceed approximately 25 J cm(-2) and 8 Gy, respectively. Synergistic interactions are observed only for the lower fluence rate (25 mW cm(-2)) investigated. The degree of interaction appears to be independent of both sequence and the PDT or ionizing radiation time intervals investigated (1 and 24 h). Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays show that low-fluence rate PDT is very efficient at inducing apoptotic cell death, whereas neither high-fluence rate PDT nor ionizing radiation produces significant apoptosis. Although the mechanisms remain to be elucidated, the data imply that the observed synergism is likely not due to gamma-induced cell cycle arrest or to PDT-induced inhibition of DNA repair.