Emerging exascale systems have the ability to accelerate the time-to-discovery for scientific workflows. However, as these workflows become more complex, their generated data has grown at an unprecedented rate, making I/O constraints challenging. To address this problem advanced memory hierarchies, such as burst buffers, have been proposed as intermediate layers between the compute nodes and the parallel file system. In this paper, we utilize Cray DataWarp burst buffer coupled with in-transit processing mechanisms, to demonstrate the advantages of advanced memory hierarchies in preserving traditional coupled scientific workflows. We consider in-transit workflow which couples simulation of subsurface flows with on-the-fly flow visualization. With respect to the proposed workflow, we study the performance of the Cray DataWarp Burst Buffer and provide a comparison with the Lustre parallel file system.