Design of the molecular environment of single atom catalysts (SAC) is promising for achieving high catalytic activity without expensive and scarce platinum-group metals (PGM). We utilize a first principles approach to examine how the spin state of the SAC and reactants can affect catalytic energy barriers of V, Fe, Mo, and Ta on two different graphene defects with differing magnetic moments. Spin polarized projected density of states and climbing image nudged elastic band calculations demonstrate relatively lower activation energy barriers for systems with higher spin state asymmetry near the Fermi energy; CO oxidation on Ta and V SAC have decreases in activation barrier energies of 27% and 44%, respectively. Graphic Abstract: [Figure not available: see fulltext.].