- Aynajian, Pegor;
- da Silva Neto, Eduardo H;
- Zhou, Brian B;
- Misra, Shashank;
- Baumbach, Ryan E;
- Fisk, Zachary;
- Mydosh, John;
- Thompson, Joe D;
- Bauer, Eric D;
- Yazdani, Ali
In solids containing elements with f-orbitals, the interaction between f-electron spins and those of itinerant electrons leads to the development of low-energy fermionic excitations with a heavy effective mass. These excitations are fundamental to the appearance of unconventional superconductivity observed in actinide- and lanthanide-based compounds. We use spectroscopic mapping with the scanning tunneling microscope to detect the emergence of heavy excitations with lowering of temperature in Ce- and U-based heavy fermion compounds. We demonstrate the sensitivity of the tunneling process to the composite nature of these heavy quasiparticles, which arises from quantum entanglement of itinerant conduction and f-electrons. Scattering and interference of the composite quasiparticles is used in the Cebased compounds to resolve their energy-momentum structure and to extract their mass enhancement, which develops with decreasing temperature. Finally, by extending these techniques to much lower temperatures, we investigate how superconductivity, with a nodal d-wave character, develops within a strongly correlated band of composite excitations.