Adozelesin is a synthetic analog of the antitumor antibiotic CC-1065, which alkylates the N3 of adenine in the minor groove in a sequence-selective manner. Since the cytotoxic potency of a DNA alkylating agent can be modulated by DNA excision repair system, we investigated whether nucleotide excision repair (NER) and base excision repair (BER) enzymes are able to excise the bulky DNA adduct induced by adozelesin. The UvrABC nuclease and 3-methyladenine-DNA glycosylase, that exhibit a broad spectrum of substrate specificity, were selected as typical NER and BER enzymes, respectively. The adozelesin-DNA adduct was first formed in the radiolabeled restriction DNA fragment and its excision by purified repair enzymes was monitored on a DNA sequencing gel. The treatment of the DNA adduct with a purified UvrABC nuclease and sequencing gel analysis of cleaved DNA showed that UvrABC nuclease was able to incise the adozelesin adduct. The incision site corresponded to the general nuclease incision site. Excision of this adduct by 3-methyladenine-DNA glycosylases was determined following the treatment of the DNA adduct with a homogeneous recombinant bacterial, rat and human 3-methyladenine-DNA glycosylases. Abasic sites generated by DNA glycosyalses were cleaved by the associated lyase activity of the E. coli formamidopyrimidine-DNA glycosylase (Fpg). Resolution of cleaved DNA on a sequencing gel showed that the DNA glycosylase from different sources could not release the N3-adenine adducts. A cytotoxicity assay using E. coli repair mutant strains showed that E. coli mutant strains defective in the uvrA gene were more sensitive to cell killing by adozelesin than E. coli mutant strain defective in the alkA gene or the wild type. These results suggest that the NER pathway seems to be the major excision repair system in protecting cells from the cytotoxicity of adozelesin.