Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C6 H4 CH2 )3 N](3-) (TriNOx (3-) ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNOx )thf][BAr(F) 4 ], in which Ar(F) =3,5-(CF3 )2 -C6 H3 , and [Ce(TriNOx )py][OTf]. A rare complete Ce-halide series, Ce(TriNOx )X, in which X=F(-) , Cl(-) , Br(-) , I(-) , was also synthesized. The solution chemistry of these complexes was explored through detailed solution-phase electrochemistry and (1) H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X(-) group. DFT calculations on the series of calculations corroborated the experimental findings.