In this paper, we consider the initial-boundary value problem of the
three-dimensional primitive equations for oceanic and atmospheric dynamics with
only horizontal viscosity and horizontal diffusivity. We establish the local,
in time, well-posedness of strong solutions, for any initial data $(v_0,
T_0)\in H^1$, by using the local, in space, type energy estimate. We also
establish the global well-posedness of strong solutions for this system, with
any initial data $(v_0, T_0)\in H^1\cap L^\infty$, such that $\partial_zv_0\in
L^m$, for some $m\in(2,\infty)$, by using the logarithmic type anisotropic
Sobolev inequality and a logarithmic type Gronwall inequality. This paper
improves the previous results obtained in [Cao, C.; Li, J.; Titi, E.S.: Global
well-posedness of the 3D primitive equations with only horizontal viscosity and
diffusivity, Comm. Pure Appl.Math., Vol. 69 (2016), 1492-1531.], where the
initial data $(v_0, T_0)$ was assumed to have $H^2$ regularity.