Light gravitinos, with mass in the eV to MeV range, are well motivated in particle physics, but their status as dark-matter candidates is muddled by early-Universe uncertainties. We investigate how upcoming data from colliders may clarify this picture. Light gravitinos are produced primarily in the decays of the next-to-lightest supersymmetric particle, resulting in spectacular signals, including di-photons, delayed and nonpointing photons, kinked charged tracks, and heavy metastable charged particles. We find that the Tevatron with 20fb-1 and the 7 TeV LHC with 1fb-1 may both see evidence for hundreds of light-gravitino events. Remarkably, this collider data is also well suited to distinguish between currently viable light-gravitino scenarios, with striking implications for structure formation, inflation, and other early-Universe cosmology. © 2010 The American Physical Society.