In this paper we introduce a finite-parameters feedback control algorithm for
stabilizing solutions of the Navier-Stokes-Voigt equations, the strongly damped
nonlinear wave equations and the nonlinear wave equation with nonlinear damping
term, the Benjamin-Bona-Mahony-Burgers equation and the KdV-Burgers equation.
This algorithm capitalizes on the fact that such infinite-dimensional
dissipative dynamical systems posses finite-dimensional long-time behavior
which is represented by, for instance, the finitely many determining parameters
of their long-time dynamics, such as determining Fourier modes, determining
volume elements, determining nodes , etc..The algorithm utilizes these finite
parameters in the form of feedback control to stabilize the relevant solutions.
For the sake of clarity, and in order to fix ideas, we focus in this work on
the case of low Fourier modes feedback controller, however, our results and
tools are equally valid for using other feedback controllers employing other
spatial coarse mesh interpolants.