- Mao, Haiyan;
- Tang, Jing;
- Day, Gregory S;
- Peng, Yucan;
- Wang, Haoze;
- Xiao, Xin;
- Yang, Yufei;
- Jiang, Yuanwen;
- Chen, Shuo;
- Halat, David M;
- Lund, Alicia;
- Lv, Xudong;
- Zhang, Wenbo;
- Yang, Chongqing;
- Lin, Zhou;
- Zhou, Hong-Cai;
- Pines, Alexander;
- Cui, Yi;
- Reimer, Jeffrey A
Carbon capture and sequestration reduces carbon dioxide emissions and is critical in accomplishing carbon neutrality targets. Here, we demonstrate new sustainable, solid-state, polyamine-appended, cyanuric acid-stabilized melamine nanoporous networks (MNNs) via dynamic combinatorial chemistry (DCC) at the kilogram scale toward effective and high-capacity carbon dioxide capture. Polyamine-appended MNNs reaction mechanisms with carbon dioxide were elucidated with double-level DCC where two-dimensional heteronuclear chemical shift correlation nuclear magnetic resonance spectroscopy was performed to demonstrate the interatomic interactions. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption. The coordination of polyamine and cyanuric acid modification endows MNNs with high adsorption capacity (1.82 millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies.