The development of compact quasimonoenergetic x-ray radiation sources based on laser Compton scattering (LCS) offers opportunities for novel approaches to medical imaging. However, careful experimental design is required to fully utilize the angle-correlated x-ray spectra produced by LCS sources. Direct simulations of LCS x-ray spectra are computationally expensive and difficult to employ in experimental optimization. In this manuscript, we present a computational method that fully characterizes angle-correlated LCS x-ray spectra at any end point energy within a range defined by three direct simulations. With this approach, subsequent LCS x-ray spectra can be generated with up to 200 times less computational overhead.