Dryland ecosystems can be constrained by low soil fertility. Within drylands, the soil nutrient and organic carbon (C) cycling that does occur is often mediated by soil surface communities known as biological soil crusts (biocrusts), which cycle C and nutrients in the top ca. 0–2 cm of soil. However, the degree to which biocrusts are influencing soil fertility and biogeochemical cycling in deeper, subsurface mineral soils is unclear. The movement of dissolved resources from biocrusts to deeper soil layers in leachate may be one of the main mechanisms through which biocrust fertility is transferred downward towards deeper microbial communities and plant roots occurring within mineral soil. Here we examined the role of biocrust leachate in contributing to subsurface nutrient and soluble C pools and subsurface microbial cycling. We collected biocrusts from three biocrust successional stages and explored resource pools in situ at multiple soil depths, while collecting leachate and measuring nutrient and organic C concentrations and metabolite composition from each successional stage in the laboratory. After four leachate collections, we conducted an incubation of mineral soil collected from below each biocrust successional stage to measure heterotrophic microbial CO2 flux and biomass. Overall, our findings observed that the degree of nutrient and C connectivity between biocrusts and the sub-crust mineral soil depended on the biocrust successional stage and the element being considered, and the influence of biocrust successional stage on mineral soil CO2 flux is likely related to long-term resource build up. Together, our results suggest that the influence of biocrust leachate on subsurface mineral soil is complex and context dependent, but, over longer time periods and at later successional stages, can have measurable effects on dryland soil biogeochemical cycling with feedbacks to resource availability and CO2 flux.