- Ferron, JR;
- Holcomb, CT;
- Luce, TC;
- Park, JM;
- Politzer, PA;
- Turco, F;
- Heidbrink, WW;
- Doyle, EJ;
- Hanson, JM;
- Hyatt, AW;
- In, Y;
- La Haye, RJ;
- Lanctot, MJ;
- Okabayashi, M;
- Petrie, TW;
- Petty, CC;
- Zeng, L
The initial experiments on off-axis neutral beam injection into high noninductive current fraction (f NI), high normalized pressure (β N) discharges in DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] have demonstrated changes in the plasma profiles that increase the limits to plasma pressure from ideal low-n instabilities. The current profile is broadened and the minimum value of the safety factor (q min) can be maintained above 2 where the profile of the thermal component of the plasma pressure is found to be broader. The off-axis neutral beam injection results in a broadening of the fast-ion pressure profile. Confinement of the thermal component of the plasma is consistent with the IPB98(y,2) scaling, but global confinement with q min > 2 is below the ITER-89P scaling, apparently as a result of enhanced transport of fast ions. A 0-D model is used to examine the parameter space for f NI = 1 operation and project the requirements for high performance steady-state discharges. Fully noninductive solutions are found with 4 < β N < 5 and bootstrap current fraction near 0.5 for a weak shear safety factor profile. A 1-D model is used to show that a f NI = 1 discharge at the top of this range of β N that is predicted stable to n = 1, 2, and 3 ideal MHD instabilities is accessible through further broadening of the current and pressure profiles with off-axis neutral beam injection and electron cyclotron current drive. © 2013 AIP Publishing LLC.