Background
Lamprey, basal vertebrate, is an important model system for understanding early events in vertebrate evolution. Lamprey contains orthologs of the estrogen receptor [ER], progesterone receptor and corticoid receptor. A perplexing property of lamprey is that 15α-hydroxy-steroids are active steroids. For example, 15α-hydroxy-estradiol [15α-OH-E2] is the estrogen, instead of estradiol [E2]. To investigate how 15α-OH-E2 binds lamprey ER, we constructed a 3D model of the lamprey ER with E2 and 15α-OH-E2.
Methodology
We used the 3D structure of human ERα as a template to construct a 3D model of lamprey ER. E2 and 15α-OH-E2 were inserted into the 3D model of lamprey ER and 15α-OH-E2 was inserted into human ERα. Then the each steroid-protein complex was refined using Discover 3 from Insight II software. To determine if lamprey ER had some regions that were unique among vertebrate ERs, we used the ligand-binding domain of lamprey ER as a query for a BLAST search of GenBank.
Principal Findings
Our 3D model of lamprey ER with 15α-OH-E2 shows that Sδ on Met-409 can form a hydrogen bond with the 15α-hydroxyl on 15α-OH-E2. In human ERα, the corresponding residue Ile-424 has a van der Waals contact with 15α-OH-E2. BLAST analysis of GenBank indicates that among vertebrate ERs, only lamprey ER contains a methionine at this position. Thus, the contact between Sδ on Met-409 and 15α-OH-E2 is unique. Interestingly, BLAST finds that five New World monkeys and a sturgeon contain a valine instead of isoleucine.
Significance
In addition to shedding light on the structure of the ER in a basal vertebrate, our 3D model of lamprey ER should prove useful in virtual screening of chemical libraries to identify compounds for controlling reproduction in sea lamprey, an environmental pest in Lake Michigan.