We propose a generalized theoretical framework for classifying
two-dimensional (2D) excitonic molecular aggregates based on an analysis of
temperature dependent spectra. In addition to the monomer-aggregate absorption
peak shift, which defines the conventional J- and H-aggregates, we incorporate
the peak shift associated with increasing temperature as a measure to
characterize the exciton band structure. First we show that there is a
one-to-one correspondence between the monomer-aggregate and the T-dependent
peak shifts for Kasha's well-established model of 1D aggregates, where
J-aggregates exhibit further redshift upon increasing temperature and
H-aggregates exhibit further blueshift. On the contrary, 2D aggregate
structures are capable of supporting the two other combinations: blueshifting
J-aggregates and redshifting H-aggregates, owing to their more complex exciton
band structures. Secondly, using spectral lineshape theory, the T-dependent
shift is associated with the relative abundance of states on each side of the
bright state. We further establish that the density of states can be connected
to the microscopic packing condition leading to these four classes of
aggregates by separately considering the short and long-range contribution to
the excitonic couplings. In particular the T-dependent shift is shown to be an
unambiguous signature for the sign of net short-range couplings: Aggregates
with net negative (positive) short-range couplings redshift (blueshift) with
increasing temperature. Lastly, comparison with experiments shows that our
theory can be utilized to quantitatively account for the observed but
previously unexplained T-dependent absorption lineshapes. Thus, our work
provides a firm ground for elucidating the structure-function relationships for
molecular aggregates and is fully compatible with existing experimental and
theoretical structure characterization tools.