Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have reemerged, and to characterize infrapopulations in individual hosts. The life stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years), considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with the discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host.