The NASA Starlight and Breakthrough Starshot programs conceptualize fast interstellar travel via small relativistic spacecraft that are propelled by directed energy. This process is radically different from traditional space travel and trades large and slow spacecraft for small, fast, inexpensive, and fragile ones. The main goal of these wafer satellites is to gather useful images during their deep space journey. We introduce and solve some of the main problems that accompany this concept. First, we need an object detection system that can detect planets that we have never seen before, some containing features that we may not even know exist in the universe. Second, once we have images of exoplanets, we need a way to take these images and rank them by importance. Equipment fails and data rates are slow, thus we need a method to ensure that the most important images to humankind are the ones that are prioritized for data transfer. Finally, the energy on board is minimal and must be conserved and used sparingly. No exoplanet images should be missed, but using energy erroneously would be detrimental.