Deep learning has shown state-of-art classification performance on datasets
such as ImageNet, which contain a single object in each image. However,
multi-object classification is far more challenging. We present a unified
framework which leverages the strengths of multiple machine learning methods,
viz deep learning, probabilistic models and kernel methods to obtain
state-of-art performance on Microsoft COCO, consisting of non-iconic images. We
incorporate contextual information in natural images through a conditional
latent tree probabilistic model (CLTM), where the object co-occurrences are
conditioned on the extracted fc7 features from pre-trained Imagenet CNN as
input. We learn the CLTM tree structure using conditional pairwise
probabilities for object co-occurrences, estimated through kernel methods, and
we learn its node and edge potentials by training a new 3-layer neural network,
which takes fc7 features as input. Object classification is carried out via
inference on the learnt conditional tree model, and we obtain significant gain
in precision-recall and F-measures on MS-COCO, especially for difficult object
categories. Moreover, the latent variables in the CLTM capture scene
information: the images with top activations for a latent node have common
themes such as being a grasslands or a food scene, and on on. In addition, we
show that a simple k-means clustering of the inferred latent nodes alone
significantly improves scene classification performance on the MIT-Indoor
dataset, without the need for any retraining, and without using scene labels
during training. Thus, we present a unified framework for multi-object
classification and unsupervised scene understanding.