Chlamydia trachomatis is the most prevalent cause of bacterial sexually transmitted diseases and the leading cause of preventable blindness worldwide. Global control of Chlamydia will best be achieved with a vaccine, a primary target for which is the major outer membrane protein, MOMP, which comprises ∼60% of the outer membrane protein mass of this bacterium. In the absence of experimental structural information on MOMP, three previously published topology models presumed a16-stranded barrel architecture. Here, we use the latest β-barrel prediction algorithms, previous 2D topology modeling results, and comparative modeling methodology to build a 3D model based on the 16-stranded, trimeric assumption. We find that while a 3D MOMP model captures many structural hallmarks of a trimeric 16-stranded β-barrel porin, and is consistent with most of the experimental evidence for MOMP, MOMP residues 320-334 cannot be modeled as β-strands that span the entire membrane, as is consistently observed in published 16-stranded β-barrel crystal structures. Given the ambiguous results for β-strand delineation found in this study, recent publications of membrane β-barrel structures breaking with the canonical rule for an even number of β-strands, findings of β-barrels with strand-exchanged oligomeric conformations, and alternate folds dependent upon the lifecycle of the bacterium, we suggest that although the MOMP porin structure incorporates canonical 16-stranded conformations, it may have novel oligomeric or dynamic structural changes accounting for the discrepancies observed. © 2013 Feher et al.