Inferior vena cava (IVC) filters are posited to effect flow dynamics, causing turbulence, vascular remodeling and eventual thrombosis; however, minimal data exists evaluating hemodynamic effects of IVC filters in vivo. The purpose of this study was to determine differences in hemodynamic flow parameters acquired with two-dimension (2D)-perfusion angiography before and after IVC filter placement or retrieval. 2D-perfusion images were reconstructed retrospectively from digital subtraction angiography from a cohort of 37 patients (13F/24M) before and after filter placement (n = 18) or retrieval (n = 23). Average dwell time was 239.5 ± 132.1 days. Changes in the density per pixel per second within a region of interest (ROI) were used to calculate contrast arrival time (AT), time-to-peak (TTP), wash-in-rate (WIR), and mean transit time (MTT). Measurements were obtained superior to, inferior to, and within the filter. Differences in hemodynamic parameters before and after intervention were compared, as well as correlation between parameters versus filter dwell time. A P value with Bonferroni correction of <.004 was considered statistically significant. After placement, there was no difference in any 2D-perfusion variable. After retrieval, ROIs within and inferior to the filter showed a significantly shorter TTP (1.7 vs 1.4 s, P = .004; 1.5 vs 1.3 s, P = .001, respectively) and MTT (1.7 vs 1.4 s, P = .003; 1.5 vs 1.2 s, P = .002, respectively). Difference in variables showed no significant correlation when compared to dwell time. 2D-perfusion angiography is feasible to evaluate hemodynamic effects of IVC filters in vivo. TTP and MTT within and below the filter after retrieval were significantly changed, without apparent correlation to dwell time, suggesting a functional hemodynamic delay secondary to filter presence.