Twizzler: a Data-Centric OS for Non-Volatile Memory
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Twizzler: a Data-Centric OS for Non-Volatile Memory

Creative Commons 'BY' version 4.0 license
Abstract

Byte-addressable, non-volatile memory (NVM) presents an opportunity to rethink the entire system stack. We present Twizzler, an operating system redesign for this near-future. Twizzler removes the kernel from the I/O path, provides programs with memory-style access to persistent data using small (64 bit), object-relative cross-object pointers, and enables simple and efficient long-term sharing of data both between applications and between runs of an application. Twizzler provides a clean-slate programming model for persistent data, realizing the vision of Unix in a world of persistent RAM. We show that Twizzler is simpler, more extensible, and more secure than existing I/O models and implementations by building software for Twizzler and evaluating it on NVM DIMMs. Most persistent pointer operations in Twizzler impose less than 0.5 ns added latency. Twizzler operations are up to 13× faster than Unix, and SQLite queries are up to 4.2× faster than on PMDK. YCSB workloads ran 1.1–2.9× faster on Twizzler than on native and NVM-optimized SQLite backends.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View