Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z∼ 5

Published Web Location

https://academic.oup.com/mnras/article/451/2/1892/1747784
No data is associated with this publication.
Abstract

We present new measurements of the evolution of the X-ray luminosity functions (XLFs) of unabsorbed and absorbed active galactic nuclei (AGNs) out to z ~ 5. We construct samples containing 2957 sources detected at hard (2-7 keV) X-ray energies and 4351 sources detected at soft (0.5-2 keV) energies from a compilation of Chandra surveys supplemented by widearea surveys from ASCA and ROSAT. We consider the hard and soft X-ray samples separately and find that the XLF based on either (initially neglecting absorption effects) is best described by a new flexible model parametrization where the break luminosity, normalization, and faintend slope all evolve with redshift.We then incorporate absorption effects, separatelymodelling the evolution of the XLFs of unabsorbed (20 < logNH < 22) and absorbed (22 < logNH < 24) AGNs, seeking a model that can reconcile both the hard- and soft-band samples. We find that the absorbed AGN XLF has a lower break luminosity, a higher normalization, and a steeper faint-end slope than the unabsorbed AGN XLF out to z ~ 2. Hence, absorbed AGNs dominate at low luminosities, with the absorbed fraction falling rapidly as luminosity increases. Both XLFs undergo strong luminosity evolution which shifts the transition in the absorbed fraction to higher luminosities at higher redshifts. The evolution in the shape of the total XLF is primarily driven by the changing mix of unabsorbed and absorbed populations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item