Differential involvement of the canonical and noncanonical inflammasomes in the immune response against infection by the periodontal bacteria Porphyromonas gingivalis and Fusobacterium nucleatum
Published Web Location
https://www.sciencedirect.com/science/article/pii/S2666517421000043?via%3DihubAbstract
We examined the involvement of the P2 × 7 receptor and the canonical and noncanonical inflammasomes in the control of single-species or dual-species infection by the periodontal bacteria Porphyromonas gingivalis and Fusobacterium nucleatum in cells and mice. Stimulation of the P2 × 7 receptor leads to activation of the canonical NLRP3 inflammasome and activation of caspase-1, which leads to cleavage of pro-IL-1β to IL-1β, a key cytokine in the host inflammatory response in periodontal disease. The non-canonical inflammasome pathway involves caspase-11. Thus, wildtype (WT), P2 × 7-/-, caspase-11-/- and caspase-1/11-/- mice were co-infected with both bacterial species. In parallel, bone marrow-derived macrophages (BMDMs) from WT mice and the different knockout mice were infected with P. gingivalis and/or F. nucleatum, and treated or not with extracellular ATP, which is recognized by P2 × 7. F. nucleatum infection alone promoted secretion of IL-1β in BMDMs. Conversely, the canonical pathway involving P2 × 7 and caspase-1 was necessary for secretion of IL-1β in BMDMs infected with P. gingivalis and in the mandible of mice coinfected with P. gingivalis and F. nucleatum. The P2 × 7 pathway can limit bacterial load in single-species and dual-species infection with P. gingivalis and F. nucleatum in BMDMs and in mice. The non-canonical pathway involving caspase-11 was required for secretion of IL-1β induced by F. nucleatum infection in BMDMs, without treatment with ATP. Caspase-11 was also required for induction of cell death during infection with F. nucleatum and contributed to limiting bacterial load during F. nucleatum infection in BMDMs and in the gingival tissue of mice coinfected with P. gingivalis and F. nucleatum. Together, these data suggest that the P2 × 7-caspase-1 and caspase-11 pathways are involved in the immune response against infection by P. gingivalis and F. nucleatum, respectively.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.